中国颗粒协会自然科学奖项目公示情况表

项目名称	纳米反应器颗粒材料设计合成及其能源存储与转换应用
申报单位	内蒙古大学、郑州轻工业大学、南昌大学、天津大学
项目简介	该项目立足于能源结构转型和"双碳"战略背景,针对能源
	存储与转换领域存在的催化效率低、反应选择性差及循环稳定性
	不足等关键科学问题,系统开展了纳米反应器颗粒材料的合理设
	计、精准构筑与性能调控研究。通过构筑具有特定形貌、明确孔
	道结构、多重腔室和定制活性位点的纳米反应器颗粒材料,研究
	其空间限域效应、传质增强效应和多元协同效应,阐明"介观-
	微观"跨尺度协同增强机理,提升能源存储与转换效率:
	(1)提出模拟"胚胎发育"的自组装策略,发展超分子
	(CTAB) _y S ₂ 封装 MoS _x O _y 技术,构筑具有特定结构(蛋黄-蛋壳、
	中空、核壳)、物理微环境和活性位点可调的 MoS ₂ 基纳米反应器
	颗粒,增强介观尺度流体传质,操控活性位点在亚纳米空间的分
	布,实现电解水制氢活性和稳定性的大幅提高;
	(2) 提出 "自下而上"分子水平设计和"自上而下"化学
	剪裁相结合策略,控制纳米反应器内部空间构型,调控活性位点
	在纳米反应器壳层的空间位置,制备多壳层、多级纳米反应器颗
	粒材料,增强反应物富集能力,优化尺寸选择性分子识别特性,
	实现半加氢反应活性和选择性提升;
	(3)提出"金属离子定向锚定"策略,优选聚合物前驱体,
	控制活性位点在纳米反应器腔体的定向落位,优化多硫化物的吸
	附和转化过程,解决多硫化物溶解、穿梭及电极材料体积膨胀导
	致的容量低、循环寿命差等问题,实现锂/钠硫电池倍率和稳定性
	的提升。
	项目组作为提出纳米反应器定义以及多种纳米反应器颗粒
	材料可控构筑研究的团队,迄今为止以第一或通讯作者在 Nature
	Review Chemistry, Chemical Review, Chemical Society Review,
	Nature Materials Nature Nanotechnology Nature Synthesis

Nature Communication, Angewandate Chemie International Edition, Advanced Materials 等国际著名期刊发表 SCI 论文 70 余篇。研究成果得到了中国科学院院士赵东元,澳大利亚技术科学与工程院院士、国际电子技术科学院院士窦士学等国内外院士,以及彭栋梁教授、付宏刚、夏宝玉、杨启华等多名国家杰青、长江学者的积极引用和正面评价。

项目完成人多次受邀在国内外重要学术会议作主题或邀请报告。项目第一完成人先后入选教育部长江学者特聘教授计划、中组部青年千人计划、内蒙古自治区"草原英才"工程青年领军人才、辽宁省"兴辽英才计划""青年拔尖人才"等。

	姓名	排名	职称	工作单位	完成单位	对本项目重要科
						学发现的贡献
						围绕中空纳米反
						应器颗粒材料的
						孔道设计、活性
主						位点调控及其在
要						锂硫电池以及加
完			1 教授	内蒙古大 教授 学	内蒙古大学	氢反应中的应用
成						进行了深入研
人	刘健 1					究。作为项目负
情		1				责人,主导研究
况						思路的提出与实
表						验方案的设计,
						在关键技术的突
						破、核心科学问
						题的凝练以及成
						果总结等方面发
						挥了决定性作

						用,是相关学术
						论文与研究成果
						的主要贡献者。
						在 MoS ₂ 基纳米
						反应器的研究体
						系构建与项目实
						施过程中发挥核
						心作用,主导完
						成了材料设计方
						案的制定、关键
						科学问题的凝练
	巩飞	2	副教	郑州轻工	郑州轻工业	以及技术难点的
	龙	2	授	业大学	大学	突破。作为主要
						贡献者,重点参
						与了必备附件
					1-1、1-2、1-7、	
						其它附件 1-4 的
						研究工作,并负
						责相关学术论文
						的撰写与成果总
						结。
						负责纳米反应器
						构筑实验方案的
						设计和具体实
	李海	2	7井 11年	内蒙古大		施、材料表征、
	涛	3	讲师	学	内蒙古大学	实验结果分析并
						解决材料构筑中
						的技术难题。对
						必备附件 1-3、
						必备附件1-3、

						1-9 有主要贡献。
					主导了材料结构	
						的理论建模与计
						算模拟研究,通
						过第一性原理计
						算和仿真模拟深
						入揭示了催化反
	弓丽		实验	 郑州轻工	郑州轻工业	应机理与性能增
	华	4	大	业大学	大学	强机制,为催化
	_		7117	业八寸	八子	剂的理性设计提
						供了理论指导。
						作为核心研究人
						员,对必备附件
				郑州轻工 业大学		1-1、1-2、1-7、
						其它附件 1-4 做
						出贡献
	宋敏					负责中空碳基材
						料的精准构筑与
						系统表征,通过
						电化学性能测试
					郑州轻工业	与结构解析,建
		5	讲师		大学	立了材料构效关
					八寸	系模型。作为核
						心研究人员,对
						必备附件 1-10、
						其它附件 1-3 做
						出主要贡献。
	叶闰	6	教授	 南昌大学	南昌大学	负责为本项目加
	平					氢反应提供较强

的技术支持,本项技术研发的工作量占本人总工作量的 30%以上,以第一作者发表本具代表性论文 1 篇,其余相关论文 1 篇,其余相关论文 10 余篇。对必备附件 1-8 有主要贡献。 依据不同电催化及储能应用的具体要求,构和表面化学进行设计和调控,得到了一系列的高性能减基新能源材料,得到了一系列的高性能够基新能源材料,揭示了这类材料在上述电化学体系中的反应机制,所开发的材料用于新型非贵企属健化氧还	1					
作量占本人总工作量的 30%以上,以第一作者发表本项目代表性论文 1 篇,其余相关论文 10 余篇。对必备附件 1-8 有主要贡献。 依据不同电催化及储能应用的具体要求,针对材料的结构和表面化学进行设计和调控,得到了一系列的高性能碳基新能源材料,同时结合理论模拟,揭示了这类材料在上述电化学体系中的反应机制,所开发的材料用于新型非						的技术支持,本
作量的 30%以上,以第一作者发表本项目代表性论文 1 篇,其余相关论文 10 余篇。对必备附件 1-8 有主要贡献。 依据不同电催化及储能应用的具体要求,针对材料的结构和表面化学进行设计和调控,得到了一系列的高性能减基新能源材料, 同时结合理论模拟,揭示了这类材料在上述电化学体系中的反应机制,所开发的材料用于新型非						项技术研发的工
上,以第一作者发表本项目代表性论文 1 篇,其余相关论文 10余篇。对必备附件 1-8 有主要贡献。 依据不同电催化及储能应用的具体要求,针对材料的结构和表面化学进行设计和调控,得到了一系列的高性能减基新能源材料,同时结合理论模拟,揭示了这类材料在上述电化学体系中的反应机制,所开发的材料用于新型非						作量占本人总工
发表本项目代表性论文 1 篇, 其						作量的 30%以
大津大学 天津大学 大津大学 大津大学 大津大学 性论文 1 篇,其 余相关论文 10 余篇。对必备附件 1-8 有主要贡献。 依据不同电催化及储能应用的具体要求,针对材料的结构和表面化学进行设计和调控,得到了一系列的高性能碳基新能源材料,同时结合理论模拟,揭示了这类材料在上述电化学体系中的反应机制,所开发的材料用于新型非						上,以第一作者
全国						发表本项目代表
全国						性论文1篇,其
中 1-8 有主要贡献。 依据不同电催化及储能应用的具体要求,针对材料的结构和表面化学进行设计和调控,得到了一系列的高性能碳基新能源材料,同时结合理论模拟,揭示了这类材料在上述电化学体系中的反应机制,所开发的材料用于新型非						余相关论文 10
文字						余篇。对必备附
深骥 7 教授 天津大学 天津大学 天津大学 天津大学 依据不同电催化 及储能应用的具体要求,针对材料的结构和表面化学进行设计和调控,得到了一系列的高性能碳基新能源材料,同时结合理论模拟,揭示了这类材料在上述电化学体系中的反应机制,所开发的材料用于新型非						件 1-8 有主要贡
及储能应用的具体要求,针对材料的结构和表面化学进行设计和调控,得到了一系列的高性能碳基新能源材料,同时结合理论模拟,揭示了这类材料在上述电化学体系中的反应机制,所开发的材料用于新型非						献。
深骥 7 教授 天津大学 天津大学 天津大学 天津大学 不津大学 大津大学 大津大学 大津大学 大津大学 材料在上述电化 学体系中的反应 机制,所开发的 材料用于新型非						依据不同电催化
深骥 7 教授 天津大学 天津大学 天津大学 天津大学 大津大学 大津大学 材料在上述电化 学体系中的反应 机制,所开发的 材料用于新型非						及储能应用的具
深骥 7 教授 天津大学 天津大学 天津大学 天津大学 不津大学 大津大学 水料在上述电化 学体系中的反应 机制,所开发的 材料用于新型非						体要求,针对材
深骥 7 教授 天津大学 天津大学 天津大学 天津大学 天津大学 初期 不可以 大津大学 大津大学 大津大学 大津大学 大津大学 材料在上述电化 学体系中的反应 机制,所开发的 材料用于新型非						料的结构和表面
深骥 7 教授 天津大学 天津大学 天津大学 系列的高性能碳基新能源材料,同时结合理论模拟,揭示了这类材料在上述电化学体系中的反应机制,所开发的材料用于新型非						化学进行设计和
梁骥 7 教授 天津大学 天津大学 基新能源材料,同时结合理论模拟,揭示了这类材料在上述电化学体系中的反应机制,所开发的材料用于新型非						调控,得到了一
梁骥 7 教授 天津大学 天津大学 同时结合理论模拟,揭示了这类材料在上述电化学体系中的反应机制,所开发的材料用于新型非						系列的高性能碳
梁骥 7 教授 天津大学 天津大学 拟,揭示了这类 材料在上述电化 学体系中的反应 机制,所开发的 材料用于新型非						基新能源材料,
拟,揭示了这类 材料在上述电化 学体系中的反应 机制,所开发的 材料用于新型非	沙水 市場	7	44.4页	T 油土 M	丁油上 24	同时结合理论模
学体系中的反应 机制,所开发的 材料用于新型非	条 赛	/	教授	大伟人子	大伴人子	拟,揭示了这类
机制,所开发的材料用于新型非						材料在上述电化
材料用于新型非						学体系中的反应
						机制,所开发的
						材料用于新型非
文型/ JE IG + IVC						贵金属催化氧还
原、氮还原、光						原、氮还原、光
催化及储能等领						催化及储能等领
域。对必备附件						域。对必备附件

					1-4 有主	三要贡献。
主要完成单位			 内蒙古大学			
		什				
序号	论文专著名	3称	刊名	7	作者	火 目
1	Universa	.1	Angewandte	e Chemie	Feilong	Gong,
	sub-nanorea	ctor	Internationa	l Edition	Yuheng Li	iu, Yang
	strategy for syn	nthesis			Zhao, W	ei Liu,
	of yolk-shell	MoS_2			Guang Z	Zeng,
	supported	d			Guoqing W	Vang and
	single-ato	m			Yonghui	Zhang,
	electrocatal	ysts			Lihua Gong	g and Jian
	toward rob	ust			Liu	1
	hydrogen-evo	lution				
	reaction					
2	Boosting	5	Nano E1	nergy	Feilong Goi	ng, Sheng
	electrochem	ical			Ye, Mengn	neng Liu,
	oxygen evolu	ution			Jiangwei	Zhang,
	over yolk-sl	hell			Lihua Gong	g, Guang
	structured O-	MoS_2			Zeng, Erch	ao Meng,
	nanoreactors	with			Panpan Su	, Kefeng
	sulfur vacanc	y and			Xie, Yongh	ui Zhang
	decorated	Pt			and Jia	n Liu
	nanopartic	les				
3	Design of ho	llow	Angewandte	e Chemie	Yutong Pi	, Linxia
	nanoreactors	s for	Internationa	l Edition	Cui, Wenh	nao Luo,
	size- and	1			Haitao Li, Y	Yanfu Ma,
	shape-selec	tive			Na Ta, Xiny	vao Wang,
	catalytic	;			Rui Gao, D	an Wang,
	semihydroger	nation			Qihua Yang	g and Jian

	driven by molecular		Liu
	recognition		
4	Nanoengineering	Advanced Materials	Hao Tian, Ji Liang
	carbon spheres as		and Jian Liu
	nanoreactors for		
	sustainable energy		
	applications		
5	Molecular-level	Advanced Energy	Yash Boyjoo,
	design of pyrrhotite	Materials	Haodong Shi, Emilia
	electrocatalyst		Olsson, Qiong Cai,
	decorated		Zhong-Shuai Wu,
	hierarchical porous		Jian Liu and Gao
	carbon spheres as		Qing (Max) Lu.
	nanoreactors for		
	lithium-sulfur		
	batteries		
6	Multilevel hollow	Advanced Materials	Yutong Pi, Yanfu
	phenolic resin		Ma, Xinyao Wang,
	nanoreactors with		Cameron-Alexander
	precise metal		Hurd Price, Haitao
	nanoparticles spatial		Li, Qinglong Liu,
	location toward		Liwei Wang, Hongyu
	promising		Chen, Guangjin Hou,
	heterogeneous		Baolian Su and Jian
	hydrogenations		Liu
7	All-pH stable	Advanced Functional	Feilong Gong,
	sandwich-structured	Materials	Mengmeng Liu,
	MoO ₂ /MoS ₂ /C		Sheng Ye, Lihua
	hollow nanoreactors		Gong, Guang Zeng,

for enhanced electrochemical hydrogen evolution Shaoming Fan Jian Liu Boosting Angewandate Runping Ye, 1	ghui Zhou, g and
hydrogen evolution Zhang, Liming Shaoming Fan Jian Liu	Zhou, g and
Shaoming Fan Jian Liu	g and
Jian Liu	
	Lixuan
8 Boosting Angewandate Runping Ye. 1	Lixuan
low-temperature CO ₂ Chemie International Ma, Xiaoling	Hong,
hydrogenation over Edition Tomas R	amirez
Ni-based catalysts by Reina, Wenhad	Luo,
tuning strong Liqun Kang,	Gang
metal-support Feng, Re	ongbin
interactions Zhang and Ma	ohong
Fan	
9 Reactant enrichment National Science Yanfu Ma, L	iwei
in hollow void of Pt Review Wang, Want	ong
NPs@MnO _x Zhao, Tianyi	Liu,
nanoreactors for Haitao Li, We	nhao
boosting Luo, Qike Jian	g, Wei
hydrogenation Liu, Qihua Yar	g, Jun
performance Huang, Rigu	ang
Zhang, Jian L	iu, G.
Q. Max Lu and	d Can
Li	
Tuning the atomic Applied Catalysis B: Wei Liu, Ch	ang
configuration of Environmental Zhan, Jingj	ing
Co-N-C Zhang, Xiao H	[uang,
electrocatalyst Min Song, Jin	gwen
enables Li, Feng He, H	aiping
highly-selective Yang, Jian Zl	nang

H ₂ O ₂ production in	and Deli Wang
acidic media	